2025-01-15 18:20来源:本站
哥哥打大a辅助工具是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。哥哥打大a辅助工具可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅助器,不管你是想分享给你好友或者哥哥打大a辅助工具ia辅助都可以满足你的需求。同时应用在很多场景之下这个微乐小程序计算辅助也是非常有用的哦,使用起来简直不要太过有趣。特别是在大家微乐小程序时可以拿来修改自己的牌型,让自己变成“教程”,让朋友看不出。凡诸如此种场景可谓多的不得了,非常的实用且有益,
1、界面简单,没有任何广告弹出,只有一个编辑框。
2、没有风险,里面的微乐小程序黑科技,一键就能快速透明。
3、上手简单,内置详细流程视频教学,新手小白可以快速上手。
4、体积小,不占用任何手机内存,运行流畅。
哥哥打大a辅助工具开挂技巧教程
1、用户打开应用后不用登录就可以直接使用,点击微乐小程序挂所指区域
2、然后输入自己想要有的挂进行辅助开挂功能
3、返回就可以看到效果了,微乐小程序辅助就可以开挂出去了
哥哥打大a辅助工具
1、一款绝对能够让你火爆辅助神器app,可以将微乐小程序插件进行任意的修改;
2、微乐小程序辅助的首页看起来可能会比较low,填完方法生成后的技巧就和教程一样;
3、微乐小程序辅助是可以任由你去攻略的,想要达到真实的效果可以换上自己的微乐小程序挂。
哥哥打大a辅助工具ai黑科技系统规律教程开挂技巧
1、操作简单,容易上手;
2、效果必胜,一键必赢;
3、轻松取胜教程必备,快捷又方便
网上科普有关“数学家的短篇故事”话题很是火热,小编也是针对数学家的短篇故事寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
给那些喜欢数学和不喜欢数学的人们
给那些了解数学家和不了解数学家的人们
向那些文明的推动者表示深深的敬意
题记——
美丽有两种
一是深刻又动人的方程
一是你泛着倦意淡淡的笑容
Euler停止了生命,也就停止了计算。
——de Condorcet
一次拓扑课,Minkowski(闵可夫斯基)向学生们自负的宣称:“这个定理没有证明的最要的原因是至今只有一些三流的数学家在这上面花过时间。下面我就来证明它……”于是Minkowski开始拿起粉笔。这节课结束的时候,没有证完,到下一次课的时候,Minkowski继续证明,一直几个星期过去了……一个阴霾的早上,Minkowski跨入教室,那时候,恰好一道闪电划过长空,雷声震耳,Minkowski很严肃的说:“上天被我的骄傲激怒了,我的证明是不完全的……”
Hilbert(希尔伯特)曾有一个学生,给了他一篇论文来证明Riemann(黎曼)猜想,尽管其中有个无法挽回的错误,Hilbert还是被深深的吸引了。第二年,这个学生不知道怎么回事就死了,Hilbert要求在葬礼上做一个演说。那天,风雨瑟瑟,这个学生的家属们哀不胜收。Hilbert开始致词,首先指出,这样的天才这么早离开我们实在是痛惜呀,众人同感,哭得越来越凶。接下来,Hilbert说,尽管这个人的证明有错,但是如果按照这条路走,应该有可能证明Riemann猜想,再接下来,Hilbert继续热烈的冒雨讲道:“事实上,让我们考虑一个单变量的复函数.....”众人皆倒。
证明是一个偶像,数学家在这个偶像前折磨自己。
——A.Eddington
有一个人叫做Paul Wolfskehl(沃尔夫凯勒),大学读过数学,痴狂的迷恋一个漂亮的女孩子,令他沮丧的是他被无数次被拒绝,感到无所依靠,于是定下了自杀的日子,决定在午夜钟声响起的时候,告别这个世界,再也不理会尘世间的事。Wolfskehl在剩下的日子里依然努力的工作,当然不是数学,而是一些商业的东西,最后一天,他写了遗嘱,并且给他所有的朋友亲戚写了信。由于他的效率比较高的缘故,在午夜之前,他就搞定了所有的事情,剩下的几个小时,他就跑到了图书馆,随便翻起了数学书。很快,被Kummer解释Cauchy等前人做Fermat大定理为什么不行的一篇论文吸引住了。那是一篇伟大的论文,适合要自杀的数学家最后的时刻阅读。Wolfskehl竟然发现了Kummer的一个bug,一直到黎明的时候,他做出了这个证明。他自己狂骄傲不止,于是一切皆成烟云……这样他重新立了遗嘱,把他财产的一大部分设为一个奖,讲给第一个证明Fermat定理的人10万马克……,这就是Wolfskehl奖的来历。
Gottingen市政厅底层的墙上直言不讳的镌刻着:
“Gottingen以外没有生活。”
1854年,Riemann为了在Gottingen(哥廷根,这是二战之前数学和物理的中心,德国著名的学府)获得一个讲师的席位,发表了他划时代的关于几何学的演说。由于当时听这个演说的人很多是学校里的行政官员,对于数学根本就不懂,Riemann在演说中仅仅只用了一个数学公式。Weber(韦伯)的回忆说,当演说结束后,Gauss(高斯)怀着少见的表情激动地称赞Riemann的想法。如果读读Riemann的讲稿,就会发现那几乎就是哲学,尽管这样子,当时的观众中只有一个人可以理解Riemann,那就是Gauss。而整个数学界,为了完善消化Riemann的这些想法,却花了将近100年的时间。
有人说Riemann的著作,更接近于哲学而不是数学,甚至在一开始,欧洲的很多数学家认为Riemann的东西是一种家庭出版物,更接近物理学家的看法,与数学家没有关系。一次,Helmholz(霍姆霍兹)和Weiestrass(外而斯特拉斯)一起外出度假,Weiestrass随身带了一篇Riemann的博士论文,以便能在一个山清水秀的环境里静静地研究这篇他认为是复杂又宏伟的工作。但是Helmholz大惑不解,他认为,Riemann的文章再明白不过了,为什么Weiestrass作为数学家要这么花功夫呢?
开始讲D.Hilbert(希尔伯特)吧
David Hilbert并不是Gottingen毕业的。19世纪80年代,Berlin大学的博士论文答辩,需要2名学生作为对手,他们向你不停的发问。Hilbert的一个对手是Emil Wiechert(埃米尔.魏恰特),后来是最著名的地震学家。那时候,德国(也许叫做普鲁士)的大学教授特别少。Berlin只有3名数学教授,一般的大学至多2个。
Hilbert的博士宣誓仪式,校长主持:“我庄严的要你回答,宣誓是否能使你用真诚的良心承担如下的许诺和保证:你将勇敢的去捍卫真正的科学,将其开拓,为之添彩;既不为厚禄所驱,也不为虚名所赶,只求上帝真理的神辉普照大地,发扬光大。”很想知道现在清华的授予博士仪式是不是也有类似的话。
Hilbert上了年纪的时候,一次听到一群年轻人正在谈论一个他知道的数学家。那时候,Minkowski这些他很熟的人,有很多都已经故去。他特别关心正在被谈论的这个人,当大家说完这个人有几个孩子之类的事情之后,他就问说:“...他还‘存在’么……。”
一次在Hilbert的讨论班上,一个年轻人报告,其中用了一个很漂亮的定理,Hilbert说:“这真是一个妙不可言(wunderbaschon)的定理呀,是谁发现的?”那个年轻人茫然的站了很久,对Hilbert说:“是你……”。
Gottingen广为流传的一个关于Minkowski的故事,说是他在街上散步,发现一个年轻人正在默默想着某个很重要的问题,于是Minkowski轻轻地拍拍他的肩膀,告诉他“收敛是肯定的”,年轻人感激而笑。
1909-1934年的数学系主任是Edmund Landau。Landau的工作习惯很奇怪,用6个小时工作,6个小时休息,如此交替。他收到过无穷多关于证明了Fermat大定理的信件,后来实在没有精力处理,就印了一批卡片,样子大概是这个样子的
---------------------------------------------------------
亲爱的_____
谢谢您寄来的关于Fermat大定理的证明。
第一个错误在______页 ______行
这使得证明无效。
E.M.Landau
---------------------------------------------------------
尽管有很多的稿件都退了,据说剩下的还有3米多高。
关于这个宇宙最让人难以理解的地方就是她竟然是可以被理解的。
——Albert Einstein
Einstein构思广义相对论的时候,尽管他的数学家朋友教了他很多Riemann几何,他的数学还是不尽如人意。后来,他去过一次Gottingen,给Hilbert等很多数学家做过几次报告,他走不久,Hilbert就算出来了那个著名的场方程,Hilbert的数学当然比Einstein好很多。不久,Einstein也得出来了,有人建议Hilbert考虑这个东西的署名权问题,Hilbert很坦诚地说:“Gottingen马路上的每一个孩子,都比Einstein更懂得四维几何,但是,尽管如此,发明相对论的仍然是Einstein而不是数学家。”
Einstein的场方程的第一个球对称的解,也就是Schwarzschild(施瓦茨查尔德)解,是同名的这个人,在一战的战壕里给出的。Schwarzschild是Gottingen的天文学的教授。
Edditngton(艾丁顿)是一个伟大的天文物理学家,下面这个故事是讲他如何吹牛的。Albert Einstein的广义相对论发表没有多久,有记者去采访Eddington, 说听说世界上只有三个人懂得这套高深的理论,不知这三个人都是谁?Eddington低头沉思,很久没有回答。那个记者忍不住又问了一遍,Eddington说:“我正在想谁是第三个人……。”
Einstein描述广义相对论,用的数学就是弯曲空间上的几何学,意大利的数学家Levi-Civita在这种几何学上做出了突出的贡献。所以,有人问Einstein他最喜欢意大利的什么,他回答是意大利的细条实心面和Levi-Civita。
Einstein是Minkowski的学生,旷了无穷多的课,至于多年以后,Minkowski知道了Einstein的理论的时候,感叹道:“噢,Einstein,总是不来上课——我真的想不到他能有这样的作为。”
A.Coble是上个世纪美国的院士,做代数几何,一度很有影响。据称,他有无穷多个博士论文的题目:当你证明了一个2维的情况的时候,他叫下一个博士生去证明3维的情况,然后叫下下个博士生去做4维的。后来有个叫Gerald Huff的博士,不但做了5维的情况,而且对一般的n也解决了。这就让Coble的未来的无穷个博士无所事事了。Coble很怒。
阿基米德比荷马更有想象力。
——伏尔泰
讲完了Einstein, 继续John von Neumann (冯.诺伊曼)应该是符合道理的,这个造计算机的数学家。 当我们每次用电脑Game的时候,就应该对Neumann示以最崇高的敬意。
von Neumann曾经碰到别人问他一个估计中国小学生都很熟的问题,就是两个人相向而行,中间有一只狗跑来跑去,问两个人相遇之后,狗走了多少的这种。应该先求出相遇的时间,再乘狗的速度。如果没有什么记错的话,小时候听说过苏步青先生在德国的一个什么公共汽车上,就有人问他这个问题,他老人家当然不会感到有什么困难了。von Neumann也是瞬间给出了答案,提问的人很失望,说你以前一定听说过这个诀窍吧,他指的是上面的这个做法。von Neumann说:“什么诀窍?我所做的就是把狗每次跑的都算出来,然后算出那个无穷的级数……。”
Banach(巴拿赫,波兰天才数学家)在1927年参加一个数学聚会的时候,他伙同众多数学家,一起用伏特加灌Neumann,最终Neumann不胜酒力,去了厕所,估计是呕吐。但是Bananch回忆道,当他回来继续讨论数学的时候,丝毫没有打断他的思路。
数学家是天生的,不是造就的。
——H.Poincare
数学有害健康,大家过节了还是不要看书的好。
下面是历史上最天才的几个数学家在这个时间轴上存在的长度:
Pascal 39岁;Ramanujan 31岁;Abel 27岁;Galois 21岁;Riemann 39岁。身体重要的说。de Moivre (棣莫佛)21岁的时候,已经靠教数学为生,并且深信自己完全精通了这门学问。一个偶然的机会,他在一个公爵家里做客,刚好Newton送来了自己的《原理》,他信手翻了一下,惊奇的发现,数学竟然是如此精深如此美丽的一门学问。这样,他买下了这本书,尽管为了教学需要四处奔波,他还要撕下书页,以便能够带在口袋里,空闲时进行研究。
说几个数学家作为教师的生涯吧,大部分出名的人物讲课都不是太出色,或者说偶尔会很失败。譬如说 Newton 当初就经常对着空空的讲堂,他讲东西第一不是太清楚,第二太难,所以Cambridge的学生没有人喜欢他的课。
从一些大家不是太熟悉的人讲起。
Mondelbrolt(孟得尔布罗特)是靠着画分形出名的,其实他的叔叔,Mandelbrojt(孟得尔布罗特)是个更为出色的数学家,曾经是Bourbaki最早的几个成员。他做学生的时候,大老远从波兰到法国读数学,去了之后精神上受到了严重的伤害,因为他选了Goursat的分析课,然而Goursat上课永远用一种语气,讲述二三十年前就有的旧东西,听了三周左右的课,Mandelbrojt感觉和自己梦想当中的课差的太远,竟然哭了出来。不过,几年后,Bernstein来到巴黎,安慰Mandelbrojt说Goursat二十多年前就这么讲课。不过Goursat对人是很热情的。
遥想当年Mandelbrojt那求知的感情,是多么的纯真。那种东西,似乎已经再也不属于我们这个时代。
Lindemann(林德曼),也就是证明了π的超越性的人,据说是历史上讲课最烂的几个人之一。 此处收集他的故事两则,一个是说他讲课,一个回忆了一下他在巴黎求学的小事,还是蛮可爱的。
传说中Lindemann讲课大部分时间根本就听不清,听清的话都是不可理解的听不懂的话,而少数情况下,他讲的话又清楚又听的懂,那就是错话。
Lindemann到巴黎学习的时候,听过Bertrand和Jordan的课,当时学数学的人太少,尽管Jordan在法国算是领袖级的数学家,听他的课的人只有3个,偶尔会达到4个,其中却有一人是因为教室里暖和。
还有一些数学家的话,记在下面——
所有的数学家生活在两个不同的世界里。一个是由完美的理想形式构成的晶莹剔透的世界,一座冰宫。但他们还生活在普通世界里,事物因其发展或转瞬即逝,或模糊不清。数学家们穿梭于这两个世界,在透明的世界里,他们是成人,在现实的世界里,他们则成了婴儿。
——S.Cappel
11岁的时候,我开始学习Euclid的书,并请我的哥哥当我的老师。这是我生活中的一件大事,犹如初恋般的迷人。
有一条小路,穿过田野,通向新南盖特,我经常独自一人到那里去看落日,并想到自杀。然而,我终于不曾自杀,因为我想更多的了解数学。
——B.Russell
我不知道世人怎样看我;可我自己认为,我好像只是一个在海边玩耍的孩子,不时的为拾到更光滑些的石子或更美丽些的贝壳而欢欣,而展现在我面前的是完全未被探明的真理之海。
——Issac Newton
在一次采访当中,作为数学家的Thom同两位古人类学家讨论问题。谈到远古的人们为什么要保存火种时,一个人类学家说,因为保存火种可以取暖御寒;另外一个人类学家说,因为保存火种可以烧出鲜美的肉食。而Thom说,因为夜幕来临之际,火光摇曳妩媚,灿烂多姿,是最美最美的。
美丽是我们的数学家英雄们永恒的追求。
在我看来,以下15位非常牛X:
第一位:“数学之神”——阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
第二位:祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
第三位:数学之父——塞乐斯
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。 塞乐斯最先证明了如下的定理:
1.圆被任一直径二等分。
2.等腰三角形的两底角相等。
3.两条直线相交,对顶角相等。
4.半圆的内接三角形,一定是直角三角形。
5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。
第四位:数学奇才——伽罗华
1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。
他去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。
第五位:欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。 欧拉是科学史上最多产的一位杰出的 数学家欧拉
数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。" 过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。 欧拉的风格是很高的,拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我死了”。欧拉终于“停止了生命和计算”。
第六位:高斯
高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月 高斯
23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 高斯虽然幼时家境贫困,但聪敏异常,受一贵族资助进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。 1855年2月23日清晨,高斯于睡梦中去世。
第七位:牛顿
艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。
第八位:近代科学的始祖:笛卡尔
勒奈·笛卡尔(Rene Descartes),1596年3月31日生于法国都兰城。笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。解析几何的创始人。笛卡儿是欧洲近代资产阶级哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
第九位:莱布尼茨
戈特弗里德·威廉·凡·莱布尼茨,德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
第十位:拉格朗日
约瑟夫·拉格朗日,全名约瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange 1735~1813)法国数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。
近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。被誉为“欧洲最大的数学家”。
第十一位:业余数学家之王——费马
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于艾萨克·牛顿、戈特弗里德·威廉·凡·莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学天才费马堪称是17世纪法国最伟大的数学家之一。
第十二位:华罗庚
华罗庚(1910.11.12—1985.6.12.),世界著名数学家,中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
第十三位:刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
第十四位:毕达哥拉斯
毕达哥拉斯(Pythagoras,572 BC?—497 BC?)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。 毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及(有争议),吸收了阿拉伯文明和印度文明(公元前480年)。
第十五位:泰勒斯
古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人。希腊七贤之一,西方思想史上第一个有记载有名字留下来的思想家。“科学和哲学之祖”,泰勒斯是古希腊及西方第一个自然科学家和哲学家。泰勒斯的学生有阿那克西曼德、阿那克西米尼等。
泰勒斯在数学方面划时代的贡献是引入了命题证明的思想。它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃。在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学命题具有充分的说服力,令人深信不疑。他曾发现了不少平面几何学的定理,诸如:“直径平分圆周”、“三角形两等边对等角”、“两条直线相交、对顶角相等”、“三角形两角及其夹边已知,此三角形完全确定”、“半圆所对的圆周角是直角”等,这些定理虽然简单,而且古埃及、古巴比伦人也许早已知道,但是,泰勒斯把它们整理成一般性的命题,论证了它们的严格性,并在实践中广泛应用。据说他可以利用一根标杆,测量、推算出金字塔的高度。据说,一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题。泰勒斯很有把握地说可以,但有一个条件——法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。泰勒斯来到金字塔前,阳光把他的影子投在地面上。每过一会儿,他就让别人测量他影子的长度,当测量值与他的身高完全吻合时,他立刻将大金字塔在地面的投影处作一记号,然后在丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔确切的高度。在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今天所说的相似三角形定理。在科学上,他倡导理性,不满足于直观的感性的特殊的认识,崇尚抽象的理性的一般的知识。譬如,等腰三角形的两底角相等,并不是指我们所能画出的、个别的等腰三角形,而应该是指“所有的”等腰三角形。这就需要论证、推理,才能确保数学命题的正确性,才能使数学具有理论上的严密性和应用上的广泛性。泰勒斯的积极倡导,为毕达哥拉斯创立理性的数学奠定了基础。
春秋前中国数学的萌芽
我们的先民在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,都是几何知识的萌芽。先秦典籍中有“隶首作数”、“结绳记事”、“刻木记事”的记载,说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。殷商甲骨文(公元前14—前11世纪)中已有13个记数单字,最大的数是“三万”,最小的是“一”。一、十、百、千、万,各有专名。其中已经蕴含有十进位置值制萌芽。传说伏羲创造了画圆的“规”、画方的“矩”,也传说黄帝臣子倕[chui垂]是“规矩”和“准绳”的创始人。早在大禹治水时,禹便“左准绳”(左手拿着准绳),“右规矩”(右手拿着规矩)(《史记·禹本纪》)。因此,我们可以说,“规”、“矩”、“准”、“绳”是我们祖先最早使用的数学工具。人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制定历法,都需要数学知识。《周髀〔bi婢〕算经》载商高答周公问,提到用矩测望高深广远。相传西周初年周公(公元前11世纪)制礼,数学成为贵族子弟教育中六门必修课程——六艺之一。不过当时学在官府,数学的发展是相当缓慢的。
春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时王权衰微,畴人四散,私学开始出现。最晚在春秋末年人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。人们已谙熟九九乘法表、整数四则运算,并使用了分数。
战国至两汉中国数学框架的确立
战国时期,各诸侯国相继完成了向封建制度的过渡。思想界、学术界诸子林立,百家争鸣,异常活跃,为数学和科学技术的发展创造了良好的条件。尽管没有一部先秦的数学著作留传到后世,但是,人们通过田地及国土面积的测量,粟米的交换,收获及战利品的分配,城池的修建,水利工程的设计,赋税的合理负担,产量的计算,以及测高望远等生产生活实践,积累了大量的数学知识。据东汉初郑众记载,当时的数学知识分成了方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要九个部分,称为“九数”。九数确立了《九章算术》的基本框架。
秦始皇结束了列国纷争,首次建立了中央集权的封建帝国,本应有利于数学的发展。但他的专制政策窒息了百家争鸣的学术空气。秦朝的残暴统治,尤其是焚书坑儒,给中国文化事业造成空前的浩劫。不久,刘邦利用推翻暴秦的农民起义,统一了中国,建立了汉朝,史称西汉。西汉政府与民生息,社会生产力得到恢复、发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。《九章算术》(省称《九章》)是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《原本》像两颗璀灿的明珠,东西辉映。
《九章》之前还有一部《周髀算经》,它本是一部以数学方法阐述盖天说的天文著作,一般认为于公元前1世纪成书。卷上记载了商高答周公问,陈子答荣方问。前者有勾股定理的特例32+42=52,后者有用勾股定理及比例算法测太阳高远及直径的内容。近年湖北省张家山出土的竹简《算数书》正在整理,其少广一问与《九章》少广章第1问基本相同,两者的关系有待于研究。
《九章》集先秦到西汉数学知识之大成。据东汉末大学者郑玄(公元127—200年)引东汉初郑众(?—公元83年)说,西汉在先秦九数基础上又发展出勾股、重差两类数学方法。魏刘徽说:《九章》是由九数发展而来的,由于秦朝焚书而散坏。西汉张苍(?—公元前152年)、耿寿昌(公元前1世纪)收集秦火遗残,加以整理删补,便成为《九章算术》。方田章提出了完整的分数运算法则,各种多边形、圆、弓形等的面积公式;粟米章提出了比例算法;衰[cui崔]分①章提出了比例分配法则;少广章给出了完整的开平方、开立方程序;商功章讨论各种立体体积公式及工程分配方法;均输章解决赋役中的合理负担,也是比例分配问题,还有若干结合西汉社会实际的算术杂题;盈不足章解决盈亏问题及可以用盈不足术解决的一般算术问题;方程章是线性方程组解法,并给出了正负数加减法则;勾股章由旁要发展而成,提出了勾股定理、解勾股形及若干测望问题的方法。全书以计算为中心,有90余条抽象性算法、公式,246道例题及其解法,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,奠定了此后中国数学居世界前列千余年的基础。《九章》分类不甚合理,没有任何定义和推导,少数公式不准确,个别公式有错误,则是不容讳言的缺点。《九章》的框架、形式、风格和特点深刻影响了中国和东方的数学。
《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》(公元前1世纪)估计为研究《九章》的作品。东汉马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,或为之作注。这些著作都未传世,从后来刘徽(今山东邹平人,生卒不详)《九章算术注》所反映的信息看,这些研究基本上停留在归纳验证《九章算术》的正确性方面,理论上未能在《九章》基础上作出长足进步。
魏晋至唐初中国数学理论体系的建立
《九章算术》之后,中国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋,中国封建社会进入一个新的阶段,庄园农奴制和门阀士族占据了经济政治舞台的中心。思想文化领域中,儒家的统治地位被削弱,谶纬迷信和繁琐的经学退出历史舞台,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。学者们通过析理,探讨思维规律,思想界出现了战国的百家争鸣以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然的可靠的基础之上。刘徽和他的《九章算术注》便是这个时代造就的最伟大的数学家和最杰出的数学著作。
大约与刘徽同时或稍前,有赵爽(又名婴,字君卿,生卒不详,估计是三国吴人)的《周髀算经注》,其可观者为“勾股圆方图”,用600余字概括了两汉以来勾股算术的成果。
刘徽《九章算术注》作于魏景元四年(公元263年),原十卷。前九卷全面论证了《九章》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不精确的或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术,用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。第十卷原名重差,为刘徽自撰自注,发展完善了重差理论,此卷后来单行,因第一问为测望一海岛的高远,名之曰《海岛算经》。他还著有《九章重差图》一卷,已佚。刘徽生活在辩难之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》“析理以辞,解体用图”(《九章算术注·序》),并对各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。刘徽博览群书,谙熟诸子百家,他不迷信古人,敢于创新,实事求是。对他未能解决的牟合方盖,坦诚直书,表示“以俟能言者”(《九章算术·少广章注》),表现了一位伟大学者寄希望于后学的坦荡胸怀。
《孙子算经》三卷,常被误认为春秋军事家孙武所著,实际上是公元400年前后的作品,作者不详。这是一部数学入门读物,给出了筹算记数制度及乘除法则等预备知识,其河上荡杯、鸡兔同笼等问题后来在民间广泛流传,“物不知数”题则开一次同余式解法之先河。张丘建(今山东人,生平不详)著的《张丘建算经》三卷,成书于北魏(5世纪下半叶)。此书补充了等差级数的若干公式,其百鸡问题是著名的不定方程问题,后世十分重视。
《缀术》包含了祖冲之(公元429—500年)和儿子祖暅〔geng 更〕之(一作祖暅,生平不详)的数学贡献。由于其内容深奥,隋唐算学馆学官(相当于今天大学数学系教授)读不懂,遂失传。据认为,将圆周率精确到八位有效数字、球体积的解决及含有负系数的二次、三次方程皆是其中的内容。祖冲之,字文远,祖籍范阳逎(今河北省涞源县)人。刘宋大明六年(公元462年)造大明历,使用岁差,改革闰制。他的改革遭到守旧派官僚戴法兴的反对,祖冲之不畏权势,据理驳斥,坚持了反对谶纬迷信,不虚推古人,实事求是的科学精神。他对机械深有研究,制造过水碓、水磨、指南车、千里船、漏壶等,并著《安边论》、《述异记》等。祖暅之,字景烁。从小爱好数学,巧思入神,极其精微。专心致志之时,雷霆不能入。有一次走路时思考问题,仆射徐勉迎面而来竟然没有发现,头撞到徐勉身上,徐勉唤他,他才知道撞了人。其父的《大明历》经他的努力在梁朝颁行。
北周甄鸾(今河北无极人,生卒不详)有三部数学著作传世,即《五曹算经》、《五经算术》、《数术记遗》。前二部内容浅近,无足道者。《数术记遗》一卷,传本题(东)汉徐岳撰、北周甄鸾注,近人多以为系甄鸾自撰自注,假托徐岳。书中记载了三种大数进位制及14种算法,其中珠算虽不同于元明的珠算盘,然开后者之先河,似无可疑。
隋唐是中国封建社会经济政治文化的鼎盛时期,然而数学上除天文历法研究中刘焯(公元544—610年)创造等间距内插公式(7世纪初)和僧一行(公元683—727年)创造不等间距内插公式(8世纪)外,几无创造,数学成就及理论水平远远低于魏晋南北朝。唐初王孝通(生卒不详)撰《缉古算经》一卷,解决了若干复杂的土方工程及勾股问题,且都用三次或四次方程解决,是为现存记载三次、四次方程的最早著作。然而,《缉古算经》未必是高于《缀术》的著作。王孝通是历算博士,曾任太史丞,在天文历法方面是保守的。他在《上〈缉古算经〉表》中指责《缀术》全错不通,于理未尽,大约他与当时别的数学家一样读不懂《缀术》。他自诩他的《缉古算经》千金不能排其一字,他一旦瞑目,其方法后人莫晓。科学家不必作谦谦君子,但如此狂妄,也是不足取的。
隋唐统治者在国子监设算学馆,置算学博士、助教指导学生学习。唐李淳风等奉敕于显庆元年(公元656年)为《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等十部算经作注,作为算学馆教材,这就是著名的《算经十书》,该书是中国古代数学奠基时期的总结。李淳风等注释保存了许多宝贵资料,但注释水平并不高。由于种种原因,算学馆实际未培养出像样的数学家。
唐中叶至宋元中国数学的高潮
经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生新的实质性变革,到10世纪下半叶,赵匡胤建立宋朝,统一中国,中国封建社会进入了另一个新的阶段,土地所有制以国有为主变为私有为主,租佃农民取代了魏唐的具有农奴身份的部曲、徒附。农业、手工业、商业和科学技术得到更大发展。中国古代四大发明,有三项——印刷术之广泛应用及活字印刷,火药用于战争,指南针用于航海——完成于唐中叶至北宋。宋秘书省于元丰七年(公元1084年)首次刊刻了《九章算术》等十部算经(时《夏侯阳算经》、《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍澣之翻刻了这些刻本,有《九章算术》(半部)、《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》五种及《数术记遗》等孤本流传到现在,是目前世界上传世最早的印刷本数学著作。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大都在成书后不久即刊刻。数学著作借助印刷术得以空前广泛的流传,对传播普及数学知识,其意义尤为深远。
宋元数学高潮早在唐中叶已见端倪。随着商业贸易的蓬勃发展,人们改进筹算乘除法,新、旧《唐书》记载了大量这类书籍,可惜绝大多数失传,只有韩延(生平不详)《算术》(8世纪)以《夏侯阳算经》的名义流传下来,该书提出了若干化乘除为加减的捷算法,并在运算中使用了十进小数,极可宝贵。
11世纪上半叶贾宪(生平不详)撰《黄帝九章算经细草》,是为北宋最重要的数学著作。贾宪曾任左班殿直(低级武官),是当时著名天文学家、数学家楚衍的学生。还著有《算法?古集》二卷,已佚。他将《九章算术》未离开题设具体对象甚至数值的术文大都抽象成一般性术文,提高了《九章算术》的理论水平;他对某些类型的数学问题进行概括,比如提出开方作法本源即贾宪三角,作为他提出的立成释锁(即开方)法的算表,这是开方问题的纲;他提出了若干新的重要方法,其中最突出的是创造增乘开方法,并提出了开四次方的程序。贾宪的思想与方法对宋元数学影响极大,是宋元数学的主要推动者之一。《黄帝九章算经细草》因被杨辉《详解九章算法》抄录而大部分保存了下来(阙卷一、二及卷三上半部,卷五的一部分)。
大科学家沈括(公元1031—1095年)对数学有独到的贡献。在《梦溪笔谈》中首创隙积术,开高阶等差级数求和问题之先河,又提出会圆术,首次提出求弓形弧长的近似公式。
12世纪北宋刘益(生平不详)撰《议古根源》,亦失传。杨辉《田亩比类乘除捷法》引用了它的若干题目与方法。《缀术》失传之后,开方式的系数仍皆为正数,刘益突破了这个限制,首先引入负系数方程,并创造了益积开方术与减从开方术求其正根,杨辉誉之为“实冠前古”。
1127年金朝入主中原,赵宋南迁,史称南宋。1234年,蒙古贵族灭金,后来建立元朝。1279年元灭南宋,占领中国。13世纪中叶至14世纪初,是宋元数学高潮的集中体现,也是中国历史上留下重要数学著作最多的半个世纪,并形成了南宋统治下的长江中下游与金元统治下的太行山两侧两个数学中心。
南方中心以秦九韶、杨辉为代表,以高次方程数值解法、同余式解法及改进乘除捷算法的研究为主。北方中心则以李冶为代表,以列高次方程的天元术及其解法为主。元统一中国后的朱世杰,则集南北两个数学中心之大成,达到了中国筹算的最高水平。
1247年秦九韶撰成《数书九章》18卷。秦九韶,字道古,自称鲁郡(今山东省)人,约1202年生于普州安岳县(今四川省)。他生活在宋元激烈斗争的南宋末年,并卷入了南宋统治集团战和两派的斗争,支持抗战派吴潜,屡遭刘克庄等人弹劾。贾似道专权后被贬到梅州(今广东省),不久(约公元1261年)死于任所,并在死后被追随贾似道的周密丑诋不堪。他天资聪明好学,对数学、天文、土木建筑、诗词、音律、弓马等都十分精通。他多次呼吁统治者施仁政,并把数学知识看成开源节流、施仁政、利国利民的有力工具。《数书九章》分大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易九类81题,其成就之大,题设之复杂都超过以往算经,有的问题有88个条件,有的答案多达180条,军事问题之多也是空前的,反映了秦氏对抗元战争的关注。大衍总数术系统解决了一次同余式组解法;正负开方术把以增乘开方法为主导的求高次方程正根的方法发展到十分完备的程度,有的方程高达十次;线性方程组解法完全以互乘相消法取代直除法;提出了与海伦公式等价的三斜求积公式;使用了完整的十进小数表示法,等等,都是其杰出成就。
杨辉共撰五部数学著作,传世的有四部,居元以前数学家之冠。杨辉,字谦光,钱塘(今杭州市)人,生平不详,只知在今江浙一带管钱粮,为政清廉。与其他大家比较,他的著作偏重于教育与普及。1261年,杨辉在刘徽注、李淳风等注释、贾宪细草的《九章算术》基础上作解题、比类,并补充了图、乘除、纂类三卷,是为《详解九章算法》,今图、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比类中的垛积术发展了沈括的隙积术;“纂类”则打破了《九章算术》的分类格局,按方法分成乘除、互换、合率、分率、衰分、叠积、盈不足、方程、勾股九类。1262年又撰《日用算法》,着重于改进乘除捷算法,只有少量题目保存下来。1274年撰《乘除通变本末》三卷。卷上的“习算纲目”是一个从启蒙到《九章》主要方法的数学教学计划。本书还总结了九归等乘除捷算法及其口诀。次年编纂《田亩比类乘除捷法》二卷,引用了刘益的方法与题目,批评了《五曹算经》四不等田求法的错误。同年,编纂《续古摘奇算法》二卷,对纵横图即幻方研究颇有贡献。后三部书又常合称为《杨辉算法》。
十二、十三世纪,北方出现了许多天元术著作,大都失传,流传至今的最早的以天元术为主要方法的著作是李冶的《测圆海镜》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,号敬斋,真定栾城(今河北省)人,生于大兴(今北京市)。其父为官清廉正直,李冶自幼受到良好的教养,且爱好数学,青年时便成为名重中原的学者,金词赋科进士。入元,遂隐居于忻、崞〔guo郭〕(今山西省北部)一带,在极为艰苦的条件下研究数学及各种学问,常粥?〔zhan毡〕不继,而聚书环堵。1251年起,主持封龙书院(今河北省)。1257、1260年两次受到元主忽必烈召见,发表了立法度,正纲纪,进君子,退小人,减刑罚,止征战,反对种族偏见的政治主张。他被聘为翰林学士。然而他羞于作唯天子、宰相之命是听的御用文人,不久便以老病为辞回到封龙山。他一生文史著述颇多,仅存《敬斋古今黈》。《测圆海镜》在洞渊九容基础上考虑了勾股形与圆的10种基本关系,在卷二一十二中就15个勾股形与圆的关系提出了170个求圆径长的问题,答案当然都相同。这些问题大都要用天元术列出方程。卷一是全书的理论基础,包括圆城图式、识别杂记等部分。圆城图式以天、地、乾、坤等汉字表示点,是个创举。识别杂记提出692条公式,除八条外都是正确的,集历代勾股形与圆的关系研究之大成。《益古演段》64问,这是一部用天元术阐释蒋周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干题目和旧术(方法)。
朱世杰有两部重要著作《算学启蒙》(公元1299年)、《四元玉鉴》(公元1303年)传世。朱世杰,字汉卿,号松庭,燕山(今北京市)人,生平不详。他在13世纪末以数学名家周游全国20余年,向他学习数学的人很多。《算学启蒙》20门,259问,包括了从乘除及其捷算法到增乘开方法、天元术等当时数学各方面的内容,形成了一个较完整的体系。《四元玉鉴》24门,288问,卷首给出古法七乘方图(改进了的贾宪三角)等四种五幅图,以及天元术、二元术、三元术、四元术的解法范例。创造四元消法,解决了多元高次方程组问题,以及高阶等差级数求和问题,高次招差法问题,是本书最大的贡献。此书是中国古代水平最高的数学著作。
杨辉、朱世杰等人对筹算乘除捷算法的改进、总结,导致了珠算盘与珠算术的产生(大约在元中叶),完成了我国计算工具和计算技术的改革。元中后期,又出现了《丁巨算法》、贾亨《算法全能集》、何平子《详明算法》等改进乘除捷算法的著作。
明清数学——从衰落到艰难的复兴
元中叶之后,中国数学急剧衰落,元末的几部著作只是对乘除捷算法有所改进。明永乐年间(公元1403—1425年)修《永乐大典》,将前此的中国数学著作按起源、各种数学方法及音义、纂类等分类抄录。汉唐宋元数学著作在明代大都散佚,清中叶修《四库全书》,中国古算书多赖此重新面世。
明代八股取士,思想禁锢严重,学者们很少留心数学。顾应祥、唐顺之是明代数学大家,全然不懂天元术和增乘开方法。景泰元年(公元1450年)吴敬撰《九章算法比类大全》十卷,收集历代应用题,亦抛弃了增乘开方法和天元术。元明之后,随着筹算捷算法的完备,珠算术产生并得到普及,明朝出现了一批有关珠算的著作。其最著者为程大位的《算法统宗》(公元1592年),凡17卷,595问。此书适应商业发展的需要,以珠算为主要计算工具,并载有珠算开方法。此书在以后二、三百年问被多次翻刻、改编,流传之广是罕见的。程大位,字汝思,号渠宾,休宁(今黄山市屯溪区)人,曾在长江中下游地区经商,注意收集算经和数学问题,晚年撰成此书。
16世纪末,利玛窦等欧洲传教士来华,与徐光启等一起翻译《几何原本》等著作。后来,传教士们又引入了三角学、对数等西方初等数学,从此,中国数学开始了中西会通的阶段。清朝260余年,留下数学著作极多,都在不同程度上融会中西数学。
清宣城梅文鼎(公元1633—1721年)潜心于中西数学研究,著述甚多,其孙梅瑴成将他的著作编辑成《梅氏丛书辑要》60卷,其中数学著作13种40卷,内容遍及当时中国数学的各个门类,对清朝数学影响极大。
康熙皇帝爱好数学,他御定由梅瑴成、何国宗、明安图、陈厚耀等编纂的《数理精蕴》53卷,全面系统地介绍了当时传入的西方数学知识。上编立纲明体,为数理本源、几何原本、算术原本等五卷;下编分条致用,为实用数学和借根方比例,以及对数、三角函数等40卷,表4种8卷,同样对清朝数学产生了巨大影响。此书于雍正元年(公元1723年)印行。
1723年,雍正帝即位,认为传教士不利于自己的统治,除少数供职于钦天监者外,将传教士悉数赶到澳门。此后,西学的传入遂告一段落,中国数学家一方面消化前此传入的数学知识,一方面忙于整理中国古典数学著作。
1773年乾隆帝决定修《四库全书》,戴震(公元1724—1777年)从《永乐大典》中辑出《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《五曹算经》、《五经算术》以及赝本《夏侯阳算经》等七部汉唐算经,并加校勘,《数书九章》、《测圆海镜》、《四元玉鉴》等久佚的宋元算书也陆续辑出或发现,从此掀起了乾嘉时期(公元1736—1820年)研究整理中国古典数学的热潮。古书注释以李潢(?—公元1812年)《九章算术细草图说》、罗士琳(公元1789—1853年)《四元玉鉴细草》影响较大。而开创性的研究则以焦循(公元1763—1820年)《里堂学算记》、汪莱(公元1768—1813年)《衡斋算学》、李锐(公元1768—1817年)《李氏算学遗书》最为有名。
18世纪初,法人杜德美(公元1668—1720年)传入牛顿、格雷果里创造的三个三角函数的级数展开式。后来,三角函数和对数函数展开式的研究成为中国数学家的重要课题。明安图(17世纪末至18世纪60年代)、董祐诚(公元1791—1823年)、项名达(公元1789—1850年)、戴煦(公元1805—1860年)等都作出了杰出贡献。李善兰(公元1811—1882年)的《方圆阐幽》、《弧矢启秘》、《对数探源》(公元1845年)在三角函数与对数函数的研究上取得了更大的成就。他创造的尖锥术提出了几个相当于定积分的公式,在接触西方微积分思想之前独立地接近了微积分学。李善兰,字壬叔,号秋纫,浙江海宁人。幼年即嗜好数学,30余岁即获创造性成果。
1840年,列强用大炮轰开了清朝闭关自守的大门,中国逐渐沦为半封建半殖民地社会。西方数学以前所未有的规模大量传入。1852年李善兰到上海,与英国传教士伟烈亚力(公元1815—1887年)合译《几何原本》后九卷、《代数学》13卷、《代微积拾级》18卷等许多西方数学著作,后者是中国第一部微积分学译著。后来,华衡芳(公元1833—1902年)与英人傅兰雅合译了《代数术》、《微积溯源》、《三角数理》、《决疑数学》等书,后者是中国第一部概率论译著。他们创造的许多术语至今还在使用。李善兰还融会中西,著述颇丰。《椭圆正术解》等四种是关于圆锥曲线的研究,《级数回求》等是关于幂级数的研究,而《垛积比类》则在朱世杰基础上系统解决了高阶等差级数求和问题,并提出了著名的李善兰恒等式。1872年撰《考数根法》,证明了费尔马小定理,提出了素数判定法则。他的著作汇集为《则古昔斋算学》,包括14种科学著作。李善兰是开展现代数学研究的第一位中国数学家。然而,总的说来,时处清末,经济衰落,社会动荡,有志于现代数学的人没有与现代工程技术结合的条件,不可能有大量可观的成果,而士大夫阶层更多的人抱有西学为我中华所固有的偏见,不求甚解。此后不久,尤其是维新变法和新文化运动之后,中国古代数学传统基本中断,中国数学研究纳入了统一的现代数学。20世纪是中国数学复兴的世纪,人们期待,在下个世纪中国将重新取得数学大国的地位。
关于“数学家的短篇故事”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!